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Abstract— The most important issue of prosthesis control is to get 
the correct control signal. In most studies, there is only one kind 
of signal applied to control the prosthesis, which is prone to 
error. In this study, a platform including measurement circuit 
and monitor software was developed to acquire 
mechanomyography (MMG) and electromyography (EMG) 
signals synchronously from flexor carpi radialis muscle of left 
arm as the signals to control prosthesis. The MMG signals were 
detected by a triaxial accelerometer, and they were analog pre-
processed. The EMG signal was detected by three surface 
electrodes and an instrumentation amplifier was used to 
preprocess the differential EMG signal. For the first test, a 
pattern recognition experiment of four kinds of wrist movement 
was implemented. The experiment was carried out on six 
subjects. Using the Support Vector Machine (SVM) algorithm, 
the accuracy of pattern recognition classification was 96.06% by 
using MMG features combined with EMG features, which is 
higher than the accuracy of using just MMG (91.81%). The 
average accuracy of EMG features was 61.86%. It verified that 
acquisition of both the signals to control prosthesis would 
produce better results. 
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I.  BACKGROUND 
Bio-signals, such as electromyography (EMG) and 

mechanomyography (MMG), are widely researched and used 
in various applications of interest, especially for prosthesis 
control [1]. But only one of them is acquired as control signal 
in most studies [2], [3], [4]. The EMG signal is an electrical 
signal of neuromuscular activation associated with a 
contracting muscle. It is especially used in research on muscle 
contraction of hand, wrist, elbow and leg [5], [6]. Surface 
electrode detection is the most popular method for detecting 
EMG signals without invasion, which usually uses two or more 
electrodes placed on the specific muscle for detection [7 ]. 
MMG signals are also widely investigated in such application. 
It is the mechanical signal obtained from muscle contractions. 
One of the major benefits of MMG signals is that it is not 
related to the impedance to the skin because it is a mechanical 
signal. Additionally, it does not generate electromagnetic 
interferences on the skin that affects other measurements. 
Those advantages facilitate the usage combined with other 

biological signals. MMG signals can be acquired using 
accelerometers [ 8], [ 9], piezoelectric contact sensors [10 ], 
microphones [11], or laser distance sensors [12]. 

In order to control the prostheses, researchers have studied 
many features and classification methods for discrimination of 
movement. The characteristic parameters of EMG and MMG 
signals can be delineated in time domain and time-frequency 
domain including root means square (RMS), mean power 
frequency (MPF), autoregressive modeling coefficient (ARC), 
and wavelet package transform coefficients. Reza Boostani et 
al. [13] studied 19 kinds of characteristic parameters of EMG 
signals to discuss the optimal parameters and parameter 
groups. Alcimar Soares et al. [2] measured the EMG signals of 
four kinds of movements from the biceps long head, biceps 
short head, triceps short head, triceps median head and triceps 
lateral head. In two separated experiments, Multi-Layer 
Perceptron architecture was used as classifier when classifying 
EMG signals using fourth-order ARC parameters and tenth-
order ARC parameters. Mean rates of success from 95% to 
96% were achieved. Mohamed R. Al-Mulla et al. [14] recorded 
MMG signals on the belly of the biceps brachii by an 
accelerometer. The acquired signals were grouped into fatigue 
and non-fatigue epochs. To identify muscle fatigue, a wavelet 
decomposition was utilized, and the accuracy of 81% showed 
in the classification results of genetic algorithm (GA). In 
addition, algorithms such as k-Nearest Neighbor (k-NN) 
classifiers, Nearest Mean, Decision Trees, and Support Vector 
Machine (SVM) were also frequently used for classification 
studies on bio-signals [13], [15], [16], [17]. 

In this research, a platform has been designed to acquire 
EMG and MMG signals synchronously from flexor carpi 
radialis muscle of left arm. The EMG signal was detected using 
surface electrodes and the MMG signal was derived from an 
accelerometer. In our experiment, signals for four kinds of 
activities were detected and SVM was used to discriminate 
with different combinations of signals. 
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II. SYSTEM DEVELOPMENT 

A. Sensors and Hareware Development 
Two surface electrodes (H92SG, Kendall) were placed on 

flexor carpi radialis muscle of the left arm for detecting the 
surface EMG signal with a third electrode placed on biceps 
brachii muscle as the reference electrode. An acceleration 
sensor (ADXL337, Analog Devices) was placed in the middle 
between the positive and negative surface electrodes to detect 
the MMG signal. It is a low-power triaxial accelerometer with 
the measurement range of ±3 g and a sensitivity of 300 mV/G. 
It can be used not only for the measurement of tilt angle, but 
also for the measurement of dynamic acceleration generated by 
movement and vibration. The bandwidth of the sensor is 1600 
Hz for X and Y axes and 550 Hz for Z axis. The placement of 
the sensor is demonstrated in Figure 1. 
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Figure 1: Placement of sensors. 

The block diagram (see  

Figure 2) shows that the platform for data acquisition 
consists of several parts. For MMG signal acquisition, a triaxial 
accelerometer is used as the sensor. Actually, the signal from 
each axis of the accelerometer is regarded as one channel of 
MMG signal. Thus, there are three accelerometer outputs. The 
acceleration signals consist of a superposition of a low 
frequency component (f < 5 Hz) and a high frequency 
component (f ≥ 5 Hz) in this application. The low frequency 
component is caused by the gravitation and contents the 
information of the tilt. The high frequency component is 
generated by the muscle contractions. Both the information is 
useful, but the amplitudes of the high-frequency component are 
much smaller than the low-frequency signal component. 
Therefore, just this component shall be amplified before 
digitizing the signal. In the block diagram it can be seen, that 
for this purpose, the MMG-signals are frequency separated by 
analog highpass filters (fc=5 Hz) and lowpass filters (fc=2.5 
Hz) of 2nd order. Afterwards the high-frequency component is 
amplified with a gain of G=10, using a non-inverting amplifier 
circuit (OPA734, Texas Instruments). Instead of using 2 
separate ADC channels for both the components, the signal 
components are analog added (OPA734, Texas Instruments) 
before digitized by the internal ADC of an Arduino Uno board 
with a resolution of 10 bits and a sampling rate of 1000 SPS. 
To acquire the EMG signal, three surface electrodes are used. 
The measured differential signal is amplified by an 
instrumentation amplifier (INA128, Texas Instruments) with a 
gain of G=250. An active high pass filter was utilized for 
baseline drift removal. Since the ADC is just able to digitize 
positive voltages, a direct current component of half range of 
power supply is appended to EMG signal before digitizing. 
Afterwards, the acquired data is sent to a computer through a 
medical USB isolator (USB-GT interface-Isolator, Meilhaus 
Electronic) for digital signal analysis. 
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Figure 2: Block diagram of electrical system. (HP = high pass, LP = low pass, Ref = reference, DC = direct current) 
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B. Deveploment of a Graghical User Interface 
In order to monitor the collected data and facilitate the 

acquisition process, a graphical user interface (GUI) for 
acquisition was developed in this research. It is programmed in 
C# language and enables to check the signals during the 
measurement procedure. After the acquisition, the operator can 
review the signals, further to judge the reliability of the signal 

in time domain and frequency domain and whether it conforms 
to the characteristics of the MMG and EMG. The Fast Fourier 
Transform spectrum is calculated using the DSPLib for .NET 
4.0 [18]. The signals can be saved as text files for further 
analysis, which is convenient for other programs to import the 
signals, and greatly improves the flexibility of processing 
signals by using different software. A screenshot of the GUI is 
shown in Figure 3. 

 
Figure 3: Graphical user interface for data acquisition. The left buttons are function selection, and the middle chart shows the signals collected for a period of time, 

while the spectrum can be displayed in the four charts on the right after collection. 

III. EXPERIMENT 

A. Subjects and activities 
In order to verify the ability of acquired signals for 

prosthesis control, a collecting experiment was carried out for 6 
volunteers (four males and two females). The acquisition of 
four groups of movement, which are Wrist Flexion (WF), 
Wrist Extension (WE), Ulnar Wrist Flexion (UWF) and Hand 
Grasp (HG), is carried out for each subject. Figure 4 shows the 
illustration for these movements. Each group of movement was 
collected continuously and repeated 30 times to obtain 30 
movement segments. The interval between two actions is two 
seconds to ensure that each action is independent of each other. 
After a group of movement is completed, a rest is taken before 
measuring the next group. Figure 5 shows the typical signals of 
each movement from triaxial accelerometer and surface EMG 
electrodes.  

 
Figure 4: Illustration of movements. 
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Figure 5: Illustration of signal segments of four movements. 
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B. Data Analysis 
 

Before classification, the signal features should be selected 
primarily. According to previous publications [2], [14], [19], 
the fourth-order ARC and integral of absolute value (IAV) are 
common features for biological signal classification, so they 
are selected as the features for classification in this experiment. 
In this way, five features can be obtained for each segment to 
represent itself. And there are four such segments in one 
movement, so twenty features can be obtained to represent the 
movements. The equation for ARC is expressed as 

1

p

k i k i k
i

y a y ω−
=

= +∑                           (1) 

where ky  is the value at the K-th sampling point, k iy −  is 
the value of i-th sampling point before K, ia  is ARC, p 
represents the order of the auto-regressive model, and kω  is 
the residual white noise. A critical problem is suitable choice of 
order to reduce the residual white noise. Previous studies 
showed that the fourth-order autoregressive model for 
processing EMG and MMG signals performed well [20], [21], 
so the fourth-order autoregressive model is also chosen to 
represent patterns of signals in this research. 

IAV is expressed as: 

1

1 N

i
i

IAV y
N =

= ∑         (2) 

where iy represents the signal value at the i-th sampling 
point, and N represents the length of the signal segment, which 
reflects the overall characteristics of the signal segment. In this 
research, the SVM is used as the classification algorithm. SVM 
is a machine learning method developed on the basis of 
statistical learning theory, which is proposed by the optimal 
classification hype-plane under the linearly separable condition 
of model classes. Many scholars have made many outstanding 
contributions in the period from proposing to developing of 
this algorithm [20]. The LIBSVM library for Mathworks 
MATLAB [ 22 ] was developed by Chih-Chung Chang’s 
research group of National Taiwan University, which is very 
convenient for users. A graphical user interface for 
classification was also developed based on the LIBSVM 
library, which is shown in Figure 6. The operator can choose 
the subject to classify by a popup menu. Three buttons are used 
for reviewing data, calculating parameters for classification and 
classifying in SVM. Each parameter of channels can be 
selected or not selected for classification. This chart shows the 
result of the last classification and the average accuracy (rate of 
success by SVM when classifying signals modelled by ARC 
and IAV) is also shown under the chart. 
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Figure 6: Graphical user interface for classification. 

 

C. Results 
In the classification process, the signals were divided into 

training group and prediction group. In order to avoid artificial 
intervention, 20 segments from the same channel were 
randomly selected as the training samples, with the remaining 
10 samples as the prediction samples. Hence, each object will 
use 80 signal segments for training, and 40 segments for 

prediction. The average accuracies of the 100 times of 
prediction experiments are shown in Table 1. The average 
accuracy of only using MMG signals was (91.81±2.76)%.The 
average accuracy of EMG was (61.86±6.05)%, while the 
classification accuracy of using both MMG signal and EMG 
signal was (96.06±2.42)%. The results of using accelerometer 
and surface electrodes were clearly superior to that of using a 
single signal source.  

TABLE 1: THE AVERAGE ACCURACY OF 100 TIMES OF CLASSIFICATION PERFORMED BY EACH SUBJECT. 

Accuracy  
(%) 

MMG EMG MMG + EMG 
mean std mean std mean std 

Subject 1 88.00 1.97 69.75 2.75 98.75 1.32 
Subject 2 87.50 2.89 53.85 6.19 95.75 2.67 
Subject 3 90.50 2.84 50.23 7.23 92.78 3.59 
Subject 4 91.93 3.87 71.50 4.90 95.03 2.98 
Subject 5 99.75 0.75 62.25 8.81 99.95 0.35 
Subject 6 93.15 4.24 63.55 6.39 95.08 4.10 

AVERAGE 91.81 2.76 61.86 6.05 96.06 2.42 
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IV. SUMMARY AND OUTLOOK 
In this paper, a triaxial accelerometer and surface EMG 

electrodes were used, and the corresponding circuit was 
designed to acquire the MMG and EMG signals 
synchronously. The signal of the accelerometer was filtered 
and amplified. Experiments were carried out using both kinds 
of signals in SVM algorithm to classify actions (wrist flexion, 
wrist extension, ulnar wrist flexion and hand grasp). It was 
found that the accuracy of classifying in the experiment by 
using the triaxial accelerometer was (91.81±2.76)%, while the 
average accuracy of MMG signals combined with EMG 
signals was (96.06±2.42)%. Therefore, the combination of 
using MMG signals and EMG signal would be more accurate 
and efficient in the field of prosthesis control. In this 
experiment, the ARC and IAV features were used for 
classification to verify the ability of acquired signals for 
prosthesis control. In future study, other relevant parameters 
can be used to optimize the classification results. Moreover, if 
the two kinds of signals can obtain higher classifying accuracy, 
the combination of the two signals will be able to crosscheck 
detected movements, making it more secure and reliable in 
such application field. 

ACKNOWLEDGMENT 
This work has been supported by the German Federal 

Ministry of Education and Research (BMBF) under the project 
INOPRO (FKZ16SV7666). 

REFERENCES 
[1] Youn, Wonkeun; Kim, Jung. Estimation of elbow flexion 
force during isometric muscle contraction from 
mechanomyography and electromyography. Medical & 
biological engineering & computing, 2010, 48(11):1149-1157. 
[2] Soares, Alcimar, et al. The development of a virtual 
myoelectric prosthesis controlled by an EMG pattern 
recognition system based on neural networks. Journal of 
Intelligent Information Systems, 2003, 21(2):127-141. 
[3] Al-Timemy A H, Bugmann G, Escudero J, et al. 
Classification of finger movements for the dexterous hand 
prosthesis control with surface electromyography. IEEE 
Journal of Biomedical and Health Informatics, 2013, 17(3): 
608-618. 
[4] Amsuss S, Goebel P M, Jiang N, et al. Self-correcting 
pattern recognition system of surface EMG signals for upper 
limb prosthesis control. IEEE Transactions on Biomedical 
Engineering, 2014, 61(4): 1167-1176. 
[5] Cifrek, Mario, et al. Surface EMG based muscle fatigue 
evaluation in biomechanics. Clinical Biomechanics, 2009, 
24(4):327-340. 
[6] Hill, E. C., et al. Effect of sex on torque, recovery, EMG, 
and MMG responses to fatigue. Journal of musculoskeletal & 
neuronal interactions, 2016, 16(4):310. 
[7] Ebersole, Kyle T., et al. MMG and EMG responses of the 
superficial quadriceps femoris muscles. Journal of 
Electromyography and Kinesiology, 1999, 9(3):219-227. 

[8] Zhang, Yue, et al. The correlation analysis of muscle 
fatigue degree of flexor carpi radialis and mechanomyographic 
frequency-domain features. In: Image and Signal Processing, 
BioMedical Engineering and Informatics (CISP-BMEI), 
International Congress on. IEEE, 2016: 954-958. 
[9] Islam, Md Anamul, et al. Mechanomyography sensor 
development, related signal processing, and applications: a 
systematic review. IEEE Sensors Journal, 2013, 13(7):2499-
2516. 
[10] Qi, Liping, et al. Spectral properties of electromyographic 
and mechanomyographic signals during isometric ramp and 
step contractions in biceps brachii. Journal of 
Electromyography and Kinesiology, 2011, 21(1):128-135. 
[11] Saito, Kaito; Uchiyama, Takanori. Estimation of muscle 
stiffness during one cycle of pedaling exercises using system 
identification. Transactions of Japanese Society for Medical 
and Biological Engineering, 2016, 54. Jg., Nr. Proc, S. P2-
C06-1-P2-C06-2. 
[12] Orizio, Claudio, et al. Muscle-joint unit transfer function 
derived from torque and surface mechanomyogram in humans 
using different stimulation protocols. Journal of neuroscience 
methods, 2008, 173(1):59-66. 
[13] Boostani, Reza; Moradi, Mohammad Hassan. Evaluation 
of the forearm EMG signal features for the control of a 
prosthetic hand. Physiological measurement, 2003, 24(2):309-
319. 
[14] Al-Mulla, Mohammed R.; Sepulveda, Francisco. Novel 
Pseudo-Wavelet function for MMG signal extraction during 
dynamic fatiguing contractions. Sensors, 2014, 14(6):9489-
9504. 
[15] Mannini, Andrea; Sabatini, Angelo Maria. Machine 
learning methods for classifying human physical activity from 
on-body accelerometers. Sensors, 2010, 10(2):1154-1175. 
[16] Begg, Rezaul; Kamruzzaman, Joarder. A machine 
learning approach for automated recognition of movement 
patterns using basic, kinetic and kinematic gait data. Journal of 
biomechanics, 2005, 38(3):401-408. 
[17] Maurer, Uwe, et al. Activity recognition and monitoring 
using multiple sensors on different body positions. In: 
Wearable and Implantable Body Sensor Networks, 2006. BSN 
2006. International Workshop on. IEEE, 2006(4):115-116. 
[18] Hageman Steve, DSPLib - FFT / DFT Fourier Transform 
Library for .NET 4. Software available at 
https://www.codeproject.com/Articles/1107480/DSPLib-FFT-
DFT-Fourier-Transform-Library-for-NET.  (accessed on 17th 
May, 2017)  
[19] Zhao J, Xie Z, Jiang L, et al. EMG control for a five-
fingered prosthetic hand based on wavelet transform and 
autoregressive model, Proceedings of the 2006 IEEE 
International Conference on IEEE, 2006: 1097-1102. 
[20] Khokhar Z O, Xiao Z G, Menon C. Surface EMG pattern 
recognition for real-time control of a wrist exoskeleton. 
Biomedical engineering online, 2010, 9(1): 41. 
[21] Zhang X, Chen X, Li Y, et al. A framework for hand 
gesture recognition based on accelerometer and EMG sensors. 
IEEE Transactions on Systems, Man, and Cybernetics-Part A: 
Systems and Humans, 2011, 41(6): 1064-1076. 

https://doi.org/10.1109/CISP-BMEI.2017.8302262


This is the author's version of an article that has been published in this journal. Changes were made to this version by the 
publisher prior to publication. The final version of record is available at https://doi.org/10.1109/CISP-BMEI.2017.8302262  

[22] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library 
for support vector machines. ACM Transactions on Intelligent 

Systems and Technology, 2:27:1--27, 2011. Software 
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 

 
 

 
 

https://doi.org/10.1109/CISP-BMEI.2017.8302262

	I.  Background
	II. system development
	A. Sensors and Hareware Development
	B. Deveploment of a Graghical User Interface

	III. Experiment
	A. Subjects and activities
	B. Data Analysis
	C. Results

	IV. Summary and outlook
	Acknowledgment
	References


